Time: 10'

Chem 205 Drop Quiz 3 Friday, March 16, 2012 H. Deeb

Name:

1. Draw an absorption spectrum (general example) and label all parts clearly.

2. A 10.00 mL of an unknown iron sample was diluted to a final volume of 500.0 mL using a volumetric flask. The absorbance of the diluted sample was found to be 0.80 using a 1.00 cm cuvet. The molar absorbtivity of the unknown is 4.560 x 10³ M⁻¹ cm⁻¹.

a) Calculate the concentration of the diluted sample.

C=0.80 = 1.75 × 10 meye.

c) Calculate the concentration of the original unknown sample before dilution.

3. Hydroquinone is added to the solution to be analyzed in today's experiment, what is the function of hydroquinone?

Time: 10'

Chem 205 Drop Quiz 3

Name: _

× 10 6.

1. An AM radio station broadcasts at a frequency of 1270 kHz. Calculate the wavelength of the broadcast signal in meters. (c = 2.9979×10^8 m/s)

 $\frac{1230 \times 10^{-3} \text{ m/s}}{1230 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text{ m}}{1236 \times 10^{-3} \text{ m}} = \frac{10 \times 10^{-3} \text$

2. An iron-phenanthroline complex has a concentration of 8.40 x 10⁻⁴ mol Fe/L and gives a %T of 4.6% in a 1.00 cm cell at 520 nm wavelength. Calculate the absorbance and the molar absorptivity of this complex.

 $A = \frac{1.34}{100}.$ $A = \frac{1.34}{100}.$ $E = \frac{A}{b.c}$ $1.34 = \frac{1.34}{100 \times 8.40 \times 10^{-4}}$ $= \frac{1.34}{100 \times 8.40 \times 10^{-4}}$ $= \frac{1.39}{100 \times 8.40 \times 10^{-4}}$

3. The absorption spectrum of an unknown compound shows λ_{max} at 320 nm. Sketch a rough diagram for this spectrum and label it properly. Do you expect this compound to be colored? Justify your answer.

No, 5 don't expectate to be colored because it is not prosent.

The visible light range (400-700 nm). 320 nm < 400 nm.

Absorption (A).

Amat.

I max.

I max.